A critical phenomenon for sublinear elliptic equations in cone–like domains

نویسندگان

  • Vladimir Kondratiev
  • Vitali Liskevich
  • Vitaly Moroz
  • Zeev Sobol
چکیده

We study positive supersolutions to an elliptic equation (∗) −∆u = c|x|u, p, s ∈ R, in cone–like domains in R (N ≥ 2). We prove that in the sublinear case p < 1 there exists a critical exponent p∗ < 1 such that equation (∗) has a positive supersolution if and only if −∞ < p < p∗. The value of p∗ is determined explicitly by s and the geometry of the cone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive solutions to superlinear second–order divergence type elliptic equations in cone–like domains

We study the problem of the existence and nonexistence of positive solutions to a superlinear second–order divergence type elliptic equation with measurable coefficients −∇ · a · ∇u = u (∗), p > 1, in an unbounded cone–like domain G ⊂ R (N ≥ 3). We prove that the critical exponent p∗(a,G) = inf{p > 1 : (∗) has a positive supersolution at infinity in G } for a nontrivial cone– like domain is alw...

متن کامل

Analytic Solution for Hypersonic Flow Past a Slender Elliptic Cone Using Second-Order Perturbation Approximations

An approximate analytical solution is obtained for hypersonic flow past a slender elliptic cone using second-order perturbation techniques in spherical coordinate systems. The analysis is based on perturbations of hypersonic flow past a circular cone aligned with the free stream, the perturbations stemming from the small cross-section eccentricity. By means of hypersonic approximations for the ...

متن کامل

Positive solutions to singular semilinear elliptic equations with critical potential on cone–like domains

We study the existence and nonexistence of positive (super-) solutions to a singular semilinear elliptic equation −∇ · (|x|∇u)−B|x|u = C|x|u in cone–like domains of R (N ≥ 2), for the full range of parameters A,B, σ, p ∈ R and C > 0. We provide a complete characterization of the set of (p, σ) ∈ R such that the equation has no positive (super-) solutions, depending on the values of A,B and the p...

متن کامل

ELLIPTIC EQUATIONS OF ORDER 2m IN ANNULAR DOMAINS

In this paper we study the existence of positive radial solutions for some semilinear elliptic problems of order 2m in an annulus with Dirichlet boundary conditions. We consider a nonlinearity which is either sublinear or the sum of a sublinear and a superlinear term.

متن کامل

Non-existence of Positive Solutions of Fully Nonlinear Elliptic Equations in Unbounded Domains

In this paper we consider fully nonlinear elliptic operators of the form F (x, u,Du,D2u). Our aim is to prove that, under suitable assumptions on F , the only nonnegative viscosity super-solution u of F (x, u,Du,D2u) = 0 in an unbounded domain Ω is u ≡ 0. We show that this uniqueness result holds for the class of nonnegative super-solutions u satisfying inf x∈Ω u(x) + 1 dist(x, ∂Ω) = 0, and the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003